{ "id": "1410.5032", "version": "v1", "published": "2014-10-19T03:28:15.000Z", "updated": "2014-10-19T03:28:15.000Z", "title": "Monotonicity of Avoidance Coupling on $K_N$", "authors": [ "Ohad Noy Feldheim" ], "comment": "8 pages, 1 figure", "categories": [ "math.PR" ], "abstract": "Answering a question by Angel, Holroyd, Martin, Wilson and Winkler, we show that the maximal number of non-colliding coupled simple random walks on the complete graph $K_N$, which take turns, moving one at a time, is monotone in $N$. We use this fact to couple $\\lceil \\frac N4 \\rceil$ such walks on $K_N$, improving the previous $\\Omega(N/\\log N)$ lower bound of Angel et al. To do this we introduce a new generalization of simple avoidance coupling which we call partially-ordered simple avoidance coupling.", "revisions": [ { "version": "v1", "updated": "2014-10-19T03:28:15.000Z" } ], "analyses": { "subjects": [ "60J10" ], "keywords": [ "monotonicity", "simple avoidance coupling", "non-colliding coupled simple random walks", "maximal number", "complete graph" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1410.5032N" } } }