{ "id": "1410.4886", "version": "v1", "published": "2014-10-17T23:24:24.000Z", "updated": "2014-10-17T23:24:24.000Z", "title": "The curves not carried", "authors": [ "Vaibhav Gadre", "Saul Schleimer" ], "comment": "12 pages, 7 figures", "categories": [ "math.GT" ], "abstract": "Suppose $\\tau$ is a train track on a surface $S$. Let $C(\\tau)$ be the set of isotopy classes of simple closed curves carried by $\\tau$. Masur and Minsky [2004] prove $C(\\tau)$ is quasi-convex inside the curve complex $C(S)$. We prove the complementary set $C(S) - C(\\tau)$ is also quasi-convex.", "revisions": [ { "version": "v1", "updated": "2014-10-17T23:24:24.000Z" } ], "analyses": { "subjects": [ "57M99", "30F60", "20F65" ], "keywords": [ "curve complex", "train track", "complementary set", "quasi-convex inside", "isotopy classes" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1410.4886G" } } }