{ "id": "1410.4813", "version": "v1", "published": "2014-10-17T18:21:17.000Z", "updated": "2014-10-17T18:21:17.000Z", "title": "Schottky via the punctual Hilbert scheme", "authors": [ "Martin G. Gulbrandsen", "Martí Lahoz" ], "categories": [ "math.AG" ], "abstract": "We show that a smooth projective curve of genus $g$ can be reconstructed from its polarized Jacobian $(X, \\Theta)$ as a certain locus in the Hilbert scheme $\\mathrm{Hilb}^d(X)$, for $d=3$ and for $d=g+2$, defined by geometric conditions in terms of the polarization $\\Theta$. The result is an application of the Gunning--Welters trisecant criterion and the Castelnuovo--Schottky theorem by Pareschi--Popa and Grushevsky, and its scheme theoretic extension by the authors.", "revisions": [ { "version": "v1", "updated": "2014-10-17T18:21:17.000Z" } ], "analyses": { "subjects": [ "14H42", "14C05" ], "keywords": [ "punctual hilbert scheme", "gunning-welters trisecant criterion", "scheme theoretic extension", "geometric conditions", "smooth projective curve" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1410.4813G" } } }