{ "id": "1410.4643", "version": "v1", "published": "2014-10-17T06:06:09.000Z", "updated": "2014-10-17T06:06:09.000Z", "title": "Local times in a Brownian excursion", "authors": [ "Krishna B. Athreya", "Raoul Normand", "Vivekananda Roy", "Sheng-Jhih Wu" ], "comment": "8 pages", "categories": [ "math.PR" ], "abstract": "Let $\\{B(t), t \\geq 0\\}$ be a standard Brownian motion in $\\mathbb{R}$. Let $T$ be the first return time to 0 after hitting 1, and $\\{L(T,x), x \\in \\mathbb{R}\\}$ be the local time process at time $T$ and level $x$. The distribution of $L(T,x)$ for each $x \\in \\mathbb{R}$ is determined. This is applied to the estimation of a $L^1$ integral on $\\mathbb{R}$.", "revisions": [ { "version": "v1", "updated": "2014-10-17T06:06:09.000Z" } ], "analyses": { "subjects": [ "60J65", "60F05" ], "keywords": [ "brownian excursion", "standard brownian motion", "local time process", "first return time", "distribution" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1410.4643A" } } }