{ "id": "1410.4030", "version": "v1", "published": "2014-10-15T12:07:23.000Z", "updated": "2014-10-15T12:07:23.000Z", "title": "On the Classical Limit of the Schrödinger Equation", "authors": [ "Claude Bardos", "François Golse", "Peter Markowich", "Thierry Paul" ], "comment": "21 pages", "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "This paper provides an elementary proof of the classical limit of the Schr\\\"{o}dinger equation with WKB type initial data and over arbitrary long finite time intervals. We use only the stationary phase method and the Laptev-Sigal simple and elegant construction of a parametrix for Schr\\\"{o}dinger type equations [A. Laptev, I. Sigal, Review of Math. Phys. 12 (2000), 749-766]. We also explain in detail how the phase shifts across caustics obtained when using the Laptev-Sigal parametrix are related to the Maslov index.", "revisions": [ { "version": "v1", "updated": "2014-10-15T12:07:23.000Z" } ], "analyses": { "subjects": [ "35Q41", "81Q20", "35S30", "53D12" ], "keywords": [ "classical limit", "schrödinger equation", "arbitrary long finite time intervals", "wkb type initial data", "stationary phase method" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1410.4030B" } } }