{ "id": "1410.2941", "version": "v1", "published": "2014-10-11T02:53:01.000Z", "updated": "2014-10-11T02:53:01.000Z", "title": "New inequalities on the hyperbolicity constant of line graphs", "authors": [ "Walter Carballosa", "José M. Rodríguez", "José M. Sigarreta" ], "comment": "Accepted for publication in Ars Combinatoria", "categories": [ "math.CO" ], "abstract": "If X is a geodesic metric space and $x_1,x_2,x_3\\in X$, a {\\it geodesic triangle} $T=\\{x_1,x_2,x_3\\}$ is the union of the three geodesics $[x_1x_2]$, $[x_2x_3]$ and $[x_3x_1]$ in $X$. The space $X$ is $\\delta$-\\emph{hyperbolic} $($in the Gromov sense$)$ if any side of $T$ is contained in a $\\delta$-neighborhood of the union of the two other sides, for every geodesic triangle $T$ in $X$. We denote by $\\delta(X)$ the sharp hyperbolicity constant of $X$, i.e. $\\delta(X):=\\inf\\{\\delta\\ge 0: \\, X \\, \\text{ is $\\delta$-hyperbolic}\\,\\}\\,. $ The main result of this paper is the inequality $\\delta(G) \\le \\delta(\\mathcal L(G))$ for the line graph $\\mathcal L(G)$ of every graph $G$. We prove also the upper bound $\\delta(\\mathcal L(G)) \\le 5 \\delta(G)+ 3 l_{max}$, where $l_{max}$ is the supremum of the lengths of the edges of $G$. Furthermore, if every edge of $G$ has length $k$, we obtain $\\delta(G) \\le \\delta(\\mathcal L(G)) \\le 5 \\delta(G)+ 5k/2$.", "revisions": [ { "version": "v1", "updated": "2014-10-11T02:53:01.000Z" } ], "analyses": { "keywords": [ "line graph", "inequality", "geodesic triangle", "geodesic metric space", "sharp hyperbolicity constant" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1410.2941C" } } }