{ "id": "1410.2934", "version": "v1", "published": "2014-10-11T01:02:06.000Z", "updated": "2014-10-11T01:02:06.000Z", "title": "Symmetric skew quasisymmetric Schur functions", "authors": [ "Christine Bessenrodt", "Vasu V. Tewari", "Stephanie J. van Willigenburg" ], "comment": "25 pages", "categories": [ "math.CO" ], "abstract": "The classical Littlewood-Richardson rule is a rule for computing coefficients in many areas, and comes in many guises. In this paper we prove two Littlewood-Richardson rules for symmetric skew quasisymmetric Schur functions that are analogous to the famed version of the classical Littlewood-Richardson rule involving Yamanouchi words. Furthermore, both our rules contain this classical Littlewood-Richardson rule as a special case. We then apply our rules to combinatorially classify symmetric skew quasisymmetric Schur functions. This answers affirmatively a conjecture of Bessenrodt, Luoto and van Willigenburg.", "revisions": [ { "version": "v1", "updated": "2014-10-11T01:02:06.000Z" } ], "analyses": { "subjects": [ "05E05" ], "keywords": [ "symmetric skew quasisymmetric schur functions", "classical littlewood-richardson rule", "classify symmetric skew quasisymmetric schur", "combinatorially classify symmetric skew quasisymmetric" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1410.2934B" } } }