{ "id": "1410.2933", "version": "v1", "published": "2014-10-11T00:52:45.000Z", "updated": "2014-10-11T00:52:45.000Z", "title": "On a refinement of Wilf-equivalence for permutations", "authors": [ "Huiyun Ge", "Sherry H. F. Yan", "Yaqiu Zhang" ], "categories": [ "math.CO" ], "abstract": "Recently, Dokos et al. conjectured that for all $k, m\\geq 1$, the patterns $ 12\\ldots k(k+m+1)\\ldots (k+2)(k+1) $ and $(m+1)(m+2)\\ldots (k+m+1)m\\ldots 21 $ are $maj$-Wilf-equivalent. In this paper, we confirm this conjecture for all $k\\geq 1$ and $m=1$. In fact, we construct a descent set preserving bijection between $ 12\\ldots k (k-1) $-avoiding permutations and $23\\ldots k1$-avoiding permutations for all $k\\geq 3$. As a corollary, our bijection enables us to settle a conjecture of Gowravaram and Jagadeesan concerning the Wilf-equivalence for permutations with given descent sets.", "revisions": [ { "version": "v1", "updated": "2014-10-11T00:52:45.000Z" } ], "analyses": { "keywords": [ "wilf-equivalence", "refinement", "descent set preserving bijection", "conjecture", "avoiding permutations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1410.2933G" } } }