{ "id": "1410.2921", "version": "v1", "published": "2014-10-10T22:26:34.000Z", "updated": "2014-10-10T22:26:34.000Z", "title": "Class numbers in cyclotomic Z_p-extensions", "authors": [ "John C. Miller" ], "comment": "22 pages", "categories": [ "math.NT" ], "abstract": "For any prime p and any positive integer n, let B(p,n) denote the n-th layer of the cyclotomic Z_p-extension over the rationals. Based on the heuristics of Cohen and Lenstra, and refined by new results on class numbers of particular B(p,n), we provide evidence for the following conjecture: For all primes p and positive integers n, the ideal class group of B(p,n) is trivial.", "revisions": [ { "version": "v1", "updated": "2014-10-10T22:26:34.000Z" } ], "analyses": { "subjects": [ "11R29", "11R18", "11R80", "11Y40" ], "keywords": [ "class numbers", "cyclotomic", "positive integer", "ideal class group", "n-th layer" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1410.2921M" } } }