{ "id": "1410.2529", "version": "v1", "published": "2014-10-09T16:57:02.000Z", "updated": "2014-10-09T16:57:02.000Z", "title": "A note on hyperbolicity for log canonical pairs", "authors": [ "R. Svaldi" ], "comment": "18 pages; comments are welcome!", "categories": [ "math.AG", "math.CV" ], "abstract": "Given a log canonical pair $(X, \\Delta)$, we prove that $K_X+\\Delta$ is nef assuming there is no non constant map from the projective line with values in the open strata of the stratification induced by the non klt locus of $\\Delta$. This implies a generalization of the Cone Theorem. Moreover, we give a criterion of Nakai type to determine when under the above condition $K_X+\\Delta$ is ample. We prove some partial results in the case of arbitrary singularities.", "revisions": [ { "version": "v1", "updated": "2014-10-09T16:57:02.000Z" } ], "analyses": { "subjects": [ "14E30" ], "keywords": [ "log canonical pair", "hyperbolicity", "non klt locus", "non constant map", "open strata" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1410.2529S" } } }