{ "id": "1410.2520", "version": "v1", "published": "2014-10-09T16:17:23.000Z", "updated": "2014-10-09T16:17:23.000Z", "title": "The topological pigeonhole principle for ordinals", "authors": [ "Jacob Hilton" ], "comment": "22 pages", "categories": [ "math.LO" ], "abstract": "Given a cardinal $\\kappa$ and a sequence $\\left(\\alpha_i\\right)_{i\\in\\kappa}$ of ordinals, we determine the least ordinal $\\beta$ such that the topological partition relation \\[\\beta\\rightarrow\\left(top\\,\\alpha_i\\right)^1_{i\\in\\kappa}\\] holds, including an independence result for one class of cases. Here the prefix \"$top$\" means that the homogeneous set must be of the correct homeomorphism class rather than the correct order type. The answer is linked to the non-topological pigeonhole principle of Milner and Rado.", "revisions": [ { "version": "v1", "updated": "2014-10-09T16:17:23.000Z" } ], "analyses": { "subjects": [ "03E02" ], "keywords": [ "correct homeomorphism class", "correct order type", "non-topological pigeonhole principle", "topological partition relation", "independence result" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1410.2520H" } } }