{ "id": "1410.2129", "version": "v1", "published": "2014-10-08T14:15:05.000Z", "updated": "2014-10-08T14:15:05.000Z", "title": "Zero Lyapunov exponents and monodromy of the Kontsevich-Zorich cocycle", "authors": [ "Simion Filip" ], "comment": "34 pages. Comments welcome!", "categories": [ "math.DS", "math.GT" ], "abstract": "We describe the situations in which the Kontsevich-Zorich cocycle has zero Lyapunov exponents. Confirming a conjecture of Forni, Matheus, and Zorich, this only occurs when the cocycle satisfies additional geometric constraints. We also describe the real Lie groups which can appear in the monodromy of the Kontsevich-Zorich cocycle. The number of zero exponents is then as small as possible, given its monodromy.", "revisions": [ { "version": "v1", "updated": "2014-10-08T14:15:05.000Z" } ], "analyses": { "keywords": [ "zero lyapunov exponents", "kontsevich-zorich cocycle", "cocycle satisfies additional geometric constraints", "real lie groups", "zero exponents" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1410.2129F" } } }