{ "id": "1410.2061", "version": "v1", "published": "2014-10-08T11:06:35.000Z", "updated": "2014-10-08T11:06:35.000Z", "title": "On the largest size of $(t,t+1,..., t+p)$-core partitions", "authors": [ "Huan Xiong" ], "comment": "13 pages", "categories": [ "math.CO" ], "abstract": "In this paper we prove that Amdeberhan's conjecture on the largest size of $(t, t+1, t+2)$-core partitions is true. We also show that the number of $(t, t + 1, t + 2)$-core partitions with the largest size is $1$ or $2$ based on the parity of $t$. More generally, the largest size of $(t,t+1,..., t+p)$-core partitions and the number of such partitions with the largest size are determined.", "revisions": [ { "version": "v1", "updated": "2014-10-08T11:06:35.000Z" } ], "analyses": { "subjects": [ "05A17", "11P81" ], "keywords": [ "core partitions", "largest size", "amdeberhans conjecture" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1410.2061X" } } }