{ "id": "1410.1224", "version": "v1", "published": "2014-10-05T23:23:16.000Z", "updated": "2014-10-05T23:23:16.000Z", "title": "Forcing a countable structure to belong to the ground model", "authors": [ "Itay Kaplan", "Saharon Shelah" ], "categories": [ "math.LO" ], "abstract": "Suppose that $P$ is a forcing notion, $L$ is a language (in $V$), $\\dot{\\tau}$ a $P$-name such that $P\\Vdash$ \"$\\dot{\\tau}$ is a countable $L$-structure\". In the product $P\\times P$, there are names $\\dot{\\tau_{1}},\\dot{\\tau_{2}}$ such that for any generic filter $G=G_{1}\\times G_{2}$ over $P\\times P$, $\\dot{\\tau}_{1}[G]=\\dot{\\tau}[G_{1}]$ and $\\dot{\\tau}_{2}[G]=\\dot{\\tau}[G_{2}]$. Zapletal asked whether or not $P \\times P \\Vdash \\dot{\\tau}_{1}\\cong\\dot{\\tau}_{2}$ implies that there is some $M\\in V$ such that $P \\Vdash \\dot{\\tau}\\cong\\check{M}$. We answer this negatively and discuss related issues.", "revisions": [ { "version": "v1", "updated": "2014-10-05T23:23:16.000Z" } ], "analyses": { "subjects": [ "03C95", "03C55", "03C45" ], "keywords": [ "ground model", "countable structure", "generic filter", "forcing notion", "related issues" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1410.1224K" } } }