{ "id": "1410.0939", "version": "v1", "published": "2014-10-03T18:51:07.000Z", "updated": "2014-10-03T18:51:07.000Z", "title": "The characteristic polynomial of a random unitary matrix and Gaussian multiplicative chaos - The $L^2$-phase", "authors": [ "Christian Webb" ], "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "We study the characteristic polynomial of Haar distributed random unitary matrices. We show that after a suitable normalization, as one increases the size of the matrix, the absolute value of the characteristic polynomial (and suitable powers of it) converges in law to a Gaussian multiplicative chaos measure (for complex powers the convergence is to a random distribution).", "revisions": [ { "version": "v1", "updated": "2014-10-03T18:51:07.000Z" } ], "analyses": { "keywords": [ "random unitary matrix", "characteristic polynomial", "haar distributed random unitary matrices", "gaussian multiplicative chaos measure" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1410.0939W" } } }