{ "id": "1410.0699", "version": "v1", "published": "2014-10-02T20:12:41.000Z", "updated": "2014-10-02T20:12:41.000Z", "title": "An abstract continuity theorem for Lyapunov exponents of linear cocycles and an application to random cocycles", "authors": [ "Pedro Duarte", "Silvius Klein" ], "comment": "80 pages", "categories": [ "math.DS", "math-ph", "math.FA", "math.MP", "math.PR" ], "abstract": "We devise an abstract scheme to prove continuity of the Lyapunov exponents for a general class of linear cocycles. The main assumption is a large deviation type (LDT) estimate, uniform in the data. We provide a modulus of continuity that depends explicitly on the sharpness of the LDT estimate. Moreover, we derive such estimates for a class of irreducible random cocycles of Markovian type, thus proving H\\\"older continuity of their Lyapunov exponents. This is a preliminary version.", "revisions": [ { "version": "v1", "updated": "2014-10-02T20:12:41.000Z" } ], "analyses": { "keywords": [ "lyapunov exponents", "abstract continuity theorem", "linear cocycles", "application", "large deviation type" ], "note": { "typesetting": "TeX", "pages": 80, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1410.0699D" } } }