{ "id": "1410.0420", "version": "v1", "published": "2014-10-02T00:20:09.000Z", "updated": "2014-10-02T00:20:09.000Z", "title": "Permutation Groups and Orbits on Power Sets", "authors": [ "Yong Yang" ], "categories": [ "math.GR" ], "abstract": "Let $G$ be a permutation group of degree $n$ and let $s(G)$ denote the number of set-orbits of $G$. We determine $\\inf(\\frac {\\log_2 s(G)} n)$ over all groups $G$ that satisfy certain restrictions on composition factors (i.e. $Alt(k), k > 4$ cannot be obtained as a quotient of a subgroup of $G$).", "revisions": [ { "version": "v1", "updated": "2014-10-02T00:20:09.000Z" } ], "analyses": { "keywords": [ "permutation group", "power sets", "composition factors", "set-orbits" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1410.0420Y" } } }