{ "id": "1410.0229", "version": "v1", "published": "2014-10-01T14:02:24.000Z", "updated": "2014-10-01T14:02:24.000Z", "title": "On Maximum Signless Laplacian Estrada Index of Graphs with Given Parameters II", "authors": [ "Ramin Nasiri", "Hamid Reza Ellahi", "Gholam Hossein Fath-Tabar", "Ahmad Gholami" ], "comment": "12 pages, 4 figures", "categories": [ "math.CO" ], "abstract": "Recently Ayyaswamy [1] have introduced a novel concept of the signless Laplacian Estrada index (after here $SLEE$) associated with a graph $G$. After works, we have identified the unique graph with maximum $SLEE$ with a given parameter such as: number of cut vertices, (vertex) connectivity and edge connectivity. In this paper we continue out characterization for two further parameters; diameter and number of cut vertices.", "revisions": [ { "version": "v1", "updated": "2014-10-01T14:02:24.000Z" } ], "analyses": { "subjects": [ "05C12", "05C35", "05C50" ], "keywords": [ "maximum signless laplacian estrada index", "cut vertices", "unique graph", "novel concept", "edge connectivity" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1410.0229N" } } }