{ "id": "1410.0197", "version": "v1", "published": "2014-10-01T12:15:59.000Z", "updated": "2014-10-01T12:15:59.000Z", "title": "A Density Version of the Corradi-Hajnal Theorem", "authors": [ "Dieter Rautenbach", "Bruce Reed" ], "comment": "6 pages, 0 figures", "categories": [ "math.CO" ], "abstract": "For every positive integer $k$, we show that every graph of order $n$ at least $3k$ with more than $$\\max\\{{2k-1\\choose 2}+(2k-1)(n-(2k-1)),{3k-1\\choose 2}+(n-(3k-1))\\}$$ edges has $k$ vertex disjoint cycles, which is a best possible density version of a theorem of Corr\\'{a}di and Hajnal.", "revisions": [ { "version": "v1", "updated": "2014-10-01T12:15:59.000Z" } ], "analyses": { "keywords": [ "density version", "corradi-hajnal theorem", "vertex disjoint cycles", "positive integer" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1410.0197R" } } }