{ "id": "1410.0101", "version": "v1", "published": "2014-10-01T03:57:20.000Z", "updated": "2014-10-01T03:57:20.000Z", "title": "Cantor spectrum for a class of $C^2$ quasiperiodic Schrödinger operators", "authors": [ "Yiqian Wang", "Zhenghe Zhang" ], "comment": "21 pages, preliminary version, all comments are welcome", "categories": [ "math.DS", "math.SP" ], "abstract": "We show that for a class of $C^2$ quasiperiodic potentials and for any Diophantine frequency, the spectrum of the corresponding Schr\\\"odinger operators is Cantor. Our approach is of purely dynamical systems, which depends on a detailed analysis of asymptotic stable and unstable directions. We also apply it to general $\\mathrm{SL}(2,\\mathbb R)$ cocycles, and obtain that uniform hyperbolic systems form a open and dense set in some one-parameter family.", "revisions": [ { "version": "v1", "updated": "2014-10-01T03:57:20.000Z" } ], "analyses": { "subjects": [ "37D20", "34L05" ], "keywords": [ "quasiperiodic schrödinger operators", "cantor spectrum", "uniform hyperbolic systems form", "dense set", "quasiperiodic potentials" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1410.0101W" } } }