{ "id": "1409.8637", "version": "v1", "published": "2014-09-30T17:50:46.000Z", "updated": "2014-09-30T17:50:46.000Z", "title": "Generalizations of Shashkin and Tucker's lemma", "authors": [ "Oleg R. Musin" ], "comment": "8 pages, 2 figures", "categories": [ "math.CO", "math.GT" ], "abstract": "Tucker's lemma is a combinatorial analog of the Borsuk--Ulam theorem (BUT). In 1996 Yu. A. Shashkin proved lemma, which is a combinatorial analog of the odd mapping theorem (OMT). We consider generalizations of these lemmas for BUT--manifolds, i. e. for manifolds that satisfy BUT. Proofs rely on a generalization of the OMT and on the lemma about the doubling of manifolds with boundaries that are BUT--manifolds.", "revisions": [ { "version": "v1", "updated": "2014-09-30T17:50:46.000Z" } ], "analyses": { "keywords": [ "tuckers lemma", "generalization", "combinatorial analog", "borsuk-ulam theorem", "odd mapping theorem" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1409.8637M" } } }