{ "id": "1409.8496", "version": "v1", "published": "2014-09-30T11:35:09.000Z", "updated": "2014-09-30T11:35:09.000Z", "title": "Gaussian Integrability of Distance Function under the Lyapunov Condition", "authors": [ "Yuan Liu" ], "comment": "6 pages", "categories": [ "math.PR" ], "abstract": "In this note, we give a direct proof of the Gaussian integrability as $\\mu e^{\\delta d^2(x,x_0)} < \\infty$ for some $\\delta>0$ provided the Lyapunov condition for symmetric diffusion Markov operators, which answers a question proposed in Cattiaux-Guillin-Wu [3, Page 295]. The similar argument also works under the Gozlan's condition arising from [6, Proposition 3.5].", "revisions": [ { "version": "v1", "updated": "2014-09-30T11:35:09.000Z" } ], "analyses": { "subjects": [ "26D10", "60E15", "60J60" ], "keywords": [ "gaussian integrability", "lyapunov condition", "distance function", "symmetric diffusion markov operators", "direct proof" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1409.8496L" } } }