{ "id": "1409.8178", "version": "v1", "published": "2014-09-29T16:26:19.000Z", "updated": "2014-09-29T16:26:19.000Z", "title": "Accounting for Classical Hardware in the Control of Quantum Devices", "authors": [ "Ian N. Hincks", "Christopher Granade", "Troy W. Borneman", "D. G. Cory" ], "comment": "18 pages with appendices, 8 figures", "categories": [ "quant-ph" ], "abstract": "High fidelity coherent control of quantum systems is critical to building quantum devices and quantum computers. We provide a general optimal control framework for designing control sequences that account for hardware control distortions while maintaining robustness to environmental noise. We demonstrate the utility of our algorithm by presenting examples of robust quantum gates optimized in the presence of nonlinear distortions. We show that nonlinear classical controllers do not necessarily incur additional computational cost to pulse optimization, enabling more powerful quantum devices.", "revisions": [ { "version": "v1", "updated": "2014-09-29T16:26:19.000Z" } ], "analyses": { "keywords": [ "quantum devices", "classical hardware", "general optimal control framework", "high fidelity coherent control", "necessarily incur additional computational cost" ], "publication": { "doi": "10.1103/PhysRevApplied.4.024012", "journal": "Physical Review Applied", "year": 2015, "month": "Aug", "volume": 4, "number": 2, "pages": "024012" }, "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015PhRvP...4b4012H" } } }