{ "id": "1409.8167", "version": "v1", "published": "2014-09-29T16:08:09.000Z", "updated": "2014-09-29T16:08:09.000Z", "title": "On Hoelder-continuity of Oseledets subspaces", "authors": [ "Vitor Araujo", "Alexander I. Bufetov", "Simion Filip" ], "comment": "27 pages", "categories": [ "math.DS" ], "abstract": "For Hoelder cocycles over a Lipschitz base transformation, possibly non-invertible, we show that the subbundles given by the Oseledets Theorem are Hoelder-continuous on compact sets of measure arbitrarily close to 1. The results extend to vector bundle automorphisms, as well as to the Kontsevich-Zorich cocycle over the Teichmueller flow on the moduli space of abelian differentials. Following a recent result of Chaika-Eskin, our results also extend to any given Teichmueller disk.", "revisions": [ { "version": "v1", "updated": "2014-09-29T16:08:09.000Z" } ], "analyses": { "subjects": [ "37D25", "37A50", "37C40" ], "keywords": [ "oseledets subspaces", "hoelder-continuity", "lipschitz base transformation", "vector bundle automorphisms", "teichmueller disk" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1409.8167A" } } }