{ "id": "1409.7975", "version": "v1", "published": "2014-09-29T00:53:01.000Z", "updated": "2014-09-29T00:53:01.000Z", "title": "The smallest singular value of random rectangular matrices with no moment assumptions on entries", "authors": [ "Konstantin E. Tikhomirov" ], "categories": [ "math.PR" ], "abstract": "Let $\\delta>1$ and $\\beta>0$ be some real numbers. We prove that there are positive $u,v,N_0$ depending only on $\\beta$ and $\\delta$ with the following property: for any $N,n$ such that $N\\ge \\max(N_0,\\delta n)$, any $N\\times n$ random matrix $A=(a_{ij})$ with i.i.d. entries satisfying $\\sup\\limits_{\\lambda\\in {\\mathbb R}}{\\mathbb P}\\bigl\\{|a_{11}-\\lambda|\\le 1\\bigr\\}\\le 1-\\beta$ and any non-random $N\\times n$ matrix $B$, the smallest singular value $s_n$ of $A+B$ satisfies ${\\mathbb P}\\bigl\\{s_n(A+B)\\le u\\sqrt{N}\\bigr\\}\\le \\exp(-vN)$. The result holds without any moment assumptions on distribution of the entries of $A$.", "revisions": [ { "version": "v1", "updated": "2014-09-29T00:53:01.000Z" } ], "analyses": { "keywords": [ "smallest singular value", "random rectangular matrices", "moment assumptions", "result holds", "real numbers" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1409.7975T" } } }