{ "id": "1409.7421", "version": "v1", "published": "2014-09-25T21:13:25.000Z", "updated": "2014-09-25T21:13:25.000Z", "title": "Symmetry breaking for an elliptic equation involving the Fractional Laplacian", "authors": [ "Pablo L. De NĂ¡poli" ], "comment": "19 pages", "categories": [ "math.AP", "math.FA" ], "abstract": "We study the symmetry breaking phenomenon for an elliptic equation involving the fractional Laplacian in a large ball. Our main tool is an extension of the Strauss radial lemma involving the fractional Laplacian, which might be of independent interest; and from which we derive compact embedding theorems for a Sobolev-type space of radial functions with power weights.", "revisions": [ { "version": "v1", "updated": "2014-09-25T21:13:25.000Z" } ], "analyses": { "subjects": [ "35J60", "42B37" ], "keywords": [ "fractional laplacian", "elliptic equation", "strauss radial lemma", "symmetry breaking phenomenon", "radial functions" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1409.7421D" } } }