{ "id": "1409.7038", "version": "v1", "published": "2014-09-24T18:29:27.000Z", "updated": "2014-09-24T18:29:27.000Z", "title": "The number of simultaneous core partitions", "authors": [ "Huan Xiong" ], "categories": [ "math.CO" ], "abstract": "Amdeberhan conjectured that the number of $(t,t+1, t+2)$-core partitions is $\\sum_{0\\leq k\\leq [\\frac{t}{2}]}\\frac{1}{k+1}\\binom{t}{2k}\\binom{2k}{k}$. In this paper, we obtain the generating function of the numbers $f_t$ of $(t, t + 1, ..., t + p)$-core partitions. In particular, this verifies that Amdeberhan's conjecture is true. We also prove that the number of $(t_1,t_2,..., t_m)$-core partitions is finite if and only if gcd$(t_1,t_2,..., t_m)=1,$ which extends Anderson's result on the finiteness of the number of $(t_1,t_2)$-core partitions for coprime positive integers $t_1$ and $t_2$.", "revisions": [ { "version": "v1", "updated": "2014-09-24T18:29:27.000Z" } ], "analyses": { "subjects": [ "05A17", "11P81" ], "keywords": [ "simultaneous core partitions", "extends andersons result", "coprime positive integers", "amdeberhans conjecture", "generating function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1409.7038X" } } }