{ "id": "1409.6804", "version": "v1", "published": "2014-09-24T02:55:14.000Z", "updated": "2014-09-24T02:55:14.000Z", "title": "Everywhere differentiability of viscosity solutions to a class of Aronsson's equations", "authors": [ "Juhana Siljander", "Changyou Wang", "Yuan Zhou" ], "comment": "24 pages", "categories": [ "math.AP" ], "abstract": "For any open set $\\Omega\\subset\\mathbb R^n$ and $n\\ge 2$, we establish everywhere differentiability of viscosity solutions to the Aronsson equation $$ =0 \\quad \\rm in\\ \\ \\Omega, $$ where $H$ is given by $$H(x,\\,p)==\\sum_{i,\\,j=1}^na^{ij}(x)p_i p_j,\\ x\\in\\Omega, \\ p\\in\\mathbb R^n, $$ and $A=(a^{ij}(x))\\in C^{1,1}(\\bar\\Omega,\\mathbb R^{n\\times n})$ is uniformly elliptic. This extends an earlier theorem by Evans and Smart \\cite{es11a} on infinity harmonic functions.", "revisions": [ { "version": "v1", "updated": "2014-09-24T02:55:14.000Z" } ], "analyses": { "keywords": [ "viscosity solutions", "aronssons equations", "differentiability", "infinity harmonic functions", "open set" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1409.6804S" } } }