{ "id": "1409.6773", "version": "v1", "published": "2014-09-23T23:36:58.000Z", "updated": "2014-09-23T23:36:58.000Z", "title": "On a Stopping Game in continuous time", "authors": [ "Erhan Bayraktar", "Zhou Zhou" ], "comment": "Keywords: A new type of optimal stopping game, non-anticipative stopping strategies, Dynkin games, saddle point", "categories": [ "math.PR", "math.OC", "q-fin.MF" ], "abstract": "On a filtered probability space $(\\Omega,\\mathcal{F},P,\\mathbb{F}=(\\mathcal{F}_t)_{0\\leq t\\leq T})$, we consider stopper-stopper games $\\bar C:=\\inf_{\\Rho}\\sup_{\\tau\\in\\T}\\E[U(\\Rho(\\tau),\\tau)]$ and $\\underline C:=\\sup_{\\Tau}\\inf_{\\rho\\in\\T}\\E[U(\\Rho(\\tau),\\tau)]$ in continuous time, where $U(s,t)$ is $\\mathcal{F}_{s\\vee t}$-measurable (this is the new feature of our stopping game), $\\T$ is the set of stopping times, and $\\Rho,\\Tau:\\T\\mapsto\\T$ satisfy certain non-anticipativity conditions. We show that $\\bar C=\\underline C$, by converting these problems into a corresponding Dynkin game.", "revisions": [ { "version": "v1", "updated": "2014-09-23T23:36:58.000Z" } ], "analyses": { "subjects": [ "60G40", "93E20", "91A10", "91A60", "60G07" ], "keywords": [ "continuous time", "stopping game", "corresponding dynkin game", "filtered probability space", "non-anticipativity conditions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1409.6773B" } } }