{ "id": "1409.6324", "version": "v1", "published": "2014-09-22T20:02:23.000Z", "updated": "2014-09-22T20:02:23.000Z", "title": "A complete classification of homogeneous plane continua", "authors": [ "L. C. Hoehn", "L. G. Oversteegen" ], "comment": "26 pages", "categories": [ "math.GN" ], "abstract": "We show that every non-degenerate homogeneous plane continuum is homeomorphic to either the unit circle, the pseudo-arc, or the circle of pseudo-arcs. It follows that any planar homogenous compactum has the form $X \\times Z$, where $X$ is a either a point or one of these three homogeneous plane continua, and $Z$ is a finite set or the Cantor set. The main technical result in this paper is a new characterization of the pseudo-arc: a non-degenerate continuum is homeomorphic to the pseudo-arc if and only if it is hereditarily indecomposable and has span zero.", "revisions": [ { "version": "v1", "updated": "2014-09-22T20:02:23.000Z" } ], "analyses": { "subjects": [ "54F15", "54F65" ], "keywords": [ "complete classification", "pseudo-arc", "non-degenerate homogeneous plane continuum", "unit circle", "planar homogenous compactum" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1409.6324H" } } }