{ "id": "1409.5687", "version": "v1", "published": "2014-09-19T15:04:26.000Z", "updated": "2014-09-19T15:04:26.000Z", "title": "Moment bounds for a class of fractional stochastic heat equations", "authors": [ "Mohammud Foondun", "Wei Liu", "McSylvester Omaba" ], "categories": [ "math.PR" ], "abstract": "We consider fractional stochastic heat equations of the form $\\frac{\\partial u_t(x)}{\\partial t} = -(-\\Delta)^{\\alpha/2} u_t(x)+\\lambda \\sigma (u_t(x)) \\dot F(t,\\, x)$. Here $\\dot F$ denotes the noise term. Under suitable assumptions, we show that the second moment of the solution grows exponentially with time. In particular, this answers an open problem in \\cite{CoKh}. Along the way, we prove a number of other interesting properties which extend and complement results in \\cite{foonjose}, \\cite{Khoshnevisan:2013aa} and \\cite{Khoshnevisan:2013ab}.", "revisions": [ { "version": "v1", "updated": "2014-09-19T15:04:26.000Z" } ], "analyses": { "keywords": [ "fractional stochastic heat equations", "moment bounds", "noise term", "second moment", "solution grows" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1409.5687F" } } }