{ "id": "1409.5575", "version": "v1", "published": "2014-09-19T09:59:55.000Z", "updated": "2014-09-19T09:59:55.000Z", "title": "Renormalized solutions of nonlinear parabolic equations with general measure data", "authors": [ "Francesco Petitta" ], "journal": "Ann. Mat. Pura ed Appl., 187 (4) (2008), 563-604", "doi": "10.1007/s10231-007-0057-y", "categories": [ "math.AP" ], "abstract": "Let $\\Omega\\subseteq \\mathbb{R}^N$ a bounded open set, $N\\geq 2$, and let $p>1$; we prove existence of a renormalized solution for parabolic problems whose model is $$ \\begin{cases} u_{t}-\\Delta_{p} u=\\mu & \\text{in}\\ (0,T)\\times\\Omega,\\newline u(0,x)=u_0 & \\text{in}\\ \\Omega,\\newline u(t,x)=0 &\\text{on}\\ (0,T)\\times\\partial\\Omega, \\end{cases} $$ where $T>0$ is any positive constant, $\\mu\\in M(Q)$ is a any measure with bounded variation over $Q=(0,T)\\times\\Omega$, and $u_o\\in L^1(\\Omega)$, and $-\\Delta_{p} u=-{\\rm div} (|\\nabla u|^{p-2}\\nabla u )$ is the usual $p$-laplacian.", "revisions": [ { "version": "v1", "updated": "2014-09-19T09:59:55.000Z" } ], "analyses": { "keywords": [ "general measure data", "nonlinear parabolic equations", "renormalized solution", "bounded open set", "parabolic problems" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1409.5575P" } } }