{ "id": "1409.4939", "version": "v1", "published": "2014-09-17T10:41:15.000Z", "updated": "2014-09-17T10:41:15.000Z", "title": "On finite groups all of whose cubic Cayley graphs are integral", "authors": [ "Xuanlong Ma", "Kaishun Wang" ], "comment": "12 pages", "categories": [ "math.GR", "math.CO" ], "abstract": "For any positive integer $k$, let $\\mathcal{G}_k$ denote the set of finite groups $G$ such that all Cayley graphs ${\\rm Cay}(G,S)$ are integral whenever $|S|\\le k$. Est${\\rm \\acute{e}}$lyi and Kov${\\rm \\acute{a}}$cs \\cite{EK14} classified $\\mathcal{G}_k$ for each $k\\ge 4$. In this paper, we characterize the finite groups each of whose cubic Cayley graphs is integral. Moreover, the class $\\mathcal{G}_3$ is characterized. As an application, the classification of $\\mathcal{G}_k$ is obtained again, where $k\\ge 4$.", "revisions": [ { "version": "v1", "updated": "2014-09-17T10:41:15.000Z" } ], "analyses": { "subjects": [ "05C25", "05C50", "20C10" ], "keywords": [ "cubic cayley graphs", "finite groups", "classification", "application", "positive integer" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1409.4939M" } } }