{ "id": "1409.4670", "version": "v1", "published": "2014-09-16T15:10:28.000Z", "updated": "2014-09-16T15:10:28.000Z", "title": "Class polynomials for some affine Hecke algebras", "authors": [ "Zhongwei Yang" ], "comment": "40 pages, comments are welcome. arXiv admin note: text overlap with arXiv:1201.4901 by other authors", "categories": [ "math.RT", "math.AG", "math.NT" ], "abstract": "Class polynomials attached to affine Hecke algebras were first introduced by X.~He in \\cite{He1}. They play an important role in the study of affine Deligne-Lusztig varieties. Motivated by \\cite{He2}, we compute the class polynomials attached to an affine Hecke algebra of type (twisted) $\\widetilde{A}_2$. Using these class polynomials we prove a conjecture of G\\\"{o}rtz-Haines-Kottwitz-Reuman for the general linear group, unitary group and division algebra of semisimple rank 2. Furthermore, we discuss some interesting patterns on affine Deligne-Lusztig varieties.", "revisions": [ { "version": "v1", "updated": "2014-09-16T15:10:28.000Z" } ], "analyses": { "subjects": [ "20G05", "11Gxx", "14Lxx" ], "keywords": [ "affine hecke algebra", "affine deligne-lusztig varieties", "class polynomials", "general linear group", "semisimple rank" ], "note": { "typesetting": "TeX", "pages": 40, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1409.4670Y" } } }