{ "id": "1409.4395", "version": "v1", "published": "2014-09-15T19:44:42.000Z", "updated": "2014-09-15T19:44:42.000Z", "title": "Moduli of Tropical Plane Curves", "authors": [ "Sarah Brodsky", "Michael Joswig", "Ralph Morrison", "Bernd Sturmfels" ], "comment": "29 pages, 23 figures", "categories": [ "math.CO", "math.AG" ], "abstract": "We study the moduli space of metric graphs that arise from tropical plane curves. There are far fewer such graphs than tropicalizations of classical plane curves. For fixed genus $g$, our moduli space is a stacky fan whose cones are indexed by regular unimodular triangulations of Newton polygons with $g$ interior lattice points. It has dimension $2g+1$ unless $g \\leq 3$ or $g = 7$. We compute these spaces explicitly for $g \\leq 5$.", "revisions": [ { "version": "v1", "updated": "2014-09-15T19:44:42.000Z" } ], "analyses": { "subjects": [ "14T05" ], "keywords": [ "tropical plane curves", "moduli space", "regular unimodular triangulations", "interior lattice points", "classical plane curves" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1409.4395B" } } }