{ "id": "1409.4259", "version": "v1", "published": "2014-09-12T16:43:35.000Z", "updated": "2014-09-12T16:43:35.000Z", "title": "Waring's problem with shifts", "authors": [ "Sam Chow" ], "categories": [ "math.NT" ], "abstract": "Let $\\mu_1, \\ldots, \\mu_s$ be real numbers, with $\\mu_1$ irrational. We investigate sums of shifted $k$th powers $\\mathfrak{F}(x_1, \\ldots, x_s) = (x_1 - \\mu_1)^k + \\ldots + (x_s - \\mu_s)^k$. For $k \\ge 4$, we bound the number of variables needed to ensure that if $\\eta$ is real and $\\tau > 0$ is sufficiently large then there exist integers $x_1 > \\mu_1, \\ldots, x_s > \\mu_s$ such that $|\\mathfrak{F}(\\mathbf{x}) - \\tau| < \\eta$. This is a real analogue to Waring's problem. When $s \\ge 2k^2-2k+3$, we provide an asymptotic formula. We prove similar results for sums of general univariate degree $k$ polynomials.", "revisions": [ { "version": "v1", "updated": "2014-09-12T16:43:35.000Z" } ], "analyses": { "subjects": [ "11D75", "11E76", "11P05" ], "keywords": [ "warings problem", "general univariate degree", "th powers", "real numbers", "real analogue" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1409.4259C" } } }