{ "id": "1409.4106", "version": "v1", "published": "2014-09-14T21:11:59.000Z", "updated": "2014-09-14T21:11:59.000Z", "title": "A Liouville theorem for $α$-harmonic functions in $\\mathbb{R}^n_+$", "authors": [ "Wenxiong Chen", "Congming Li", "Lizhi Zhang", "Tingzhi Cheng" ], "categories": [ "math.AP" ], "abstract": "In this paper, we consider $\\alpha$-harmonic functions in the half space $\\mathbb{R}^n_+$: \\begin{equation} \\left\\{\\begin{array}{ll} (-\\Delta)^{\\alpha/2} u(x)=0,~u(x)>0, & x\\in\\mathbb{R}^n_+, \\\\ u(x)\\equiv 0, & x\\notin \\mathbb{R}^{n}_{+}. \\end{array}\\right. \\end{equation} We prove that all the solutions have to assume the form \\begin{equation} u(x)=\\left\\{\\begin{array}{ll}Cx_n^{\\alpha/2}, & \\qquad x\\in\\mathbb{R}^n_+, \\\\ 0, & \\qquad x\\notin\\mathbb{R}^{n}_{+}, \\end{array}\\right. \\label{2} \\end{equation} for some positive constant $C$.", "revisions": [ { "version": "v1", "updated": "2014-09-14T21:11:59.000Z" } ], "analyses": { "subjects": [ "35J99" ], "keywords": [ "harmonic functions", "liouville theorem", "half space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1409.4106C" } } }