{ "id": "1409.3790", "version": "v1", "published": "2014-09-12T17:00:13.000Z", "updated": "2014-09-12T17:00:13.000Z", "title": "Rationality and power", "authors": [ "Sam Chow", "Bin Wei" ], "categories": [ "math.NT" ], "abstract": "We produce an infinite family of transcendental numbers which, when raised to their own power, become rational. We extend the method, to investigate positive rational solutions to the equation $x^x = \\alpha$, where $\\alpha$ is a fixed algebraic number. We then explore the consequences of $x^{P(x)}$ being rational, if $x$ is rational and $P(x)$ is a fixed integer polynomial.", "revisions": [ { "version": "v1", "updated": "2014-09-12T17:00:13.000Z" } ], "analyses": { "subjects": [ "11A99", "11D61", "11J72", "11J81" ], "keywords": [ "rationality", "positive rational solutions", "transcendental numbers", "fixed algebraic number", "fixed integer polynomial" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1409.3790C" } } }