{ "id": "1409.3209", "version": "v1", "published": "2014-09-10T19:45:51.000Z", "updated": "2014-09-10T19:45:51.000Z", "title": "Probabilistic local and global well-posedness for the nonlinear wave equation on $B_2\\times\\mathbb{T}$", "authors": [ "Aynur Bulut" ], "comment": "34 pages", "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "We establish probabilistic local and global well-posedness results for the nonlinear wave equation, posed on the domain $B_2\\times\\mathbb{T}$, with randomly chosen initial data having radial symmetry in the $B_2$ variable, and with vanishing Dirichlet boundary conditions on $\\partial B_2\\times\\mathbb{T}$.", "revisions": [ { "version": "v1", "updated": "2014-09-10T19:45:51.000Z" } ], "analyses": { "keywords": [ "nonlinear wave equation", "vanishing dirichlet boundary conditions", "global well-posedness results", "randomly chosen initial data", "establish probabilistic local" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1409.3209B" } } }