{ "id": "1409.2745", "version": "v1", "published": "2014-09-09T14:11:50.000Z", "updated": "2014-09-09T14:11:50.000Z", "title": "Signed polyomino tilings by n-in-line polyominoes and Groebner bases", "authors": [ "Manuela Muzika Dizdarević", "Marinko Timotijević", "Rade T. Živaljević" ], "categories": [ "math.CO" ], "abstract": "Conway and Lagarias observed that a triangular region T(m) in a hexagonal lattice admits signed tiling by three-in-line polyominoes (tribones) if and only if m=9d-1 or m=9d for some integer d. We apply the theory of Groebner bases over integers to show that T(m) admits a signed tiling by n-in-line polyominoes (n-bones) if and only if m=dn^2-1 or m=dn^2 for some integer d. Explicit description of the Groebner basis allows us to calculate the \"Groebner discrete volume\" of a lattice region by applying the division algorithm to its `Newton polynomial'. Among immediate consequences is a description of the tile homology group of the $n$-in-line polyomino.", "revisions": [ { "version": "v1", "updated": "2014-09-09T14:11:50.000Z" } ], "analyses": { "subjects": [ "13P10", "05B45" ], "keywords": [ "signed polyomino tilings", "groebner bases", "n-in-line polyominoes", "lattice admits signed tiling", "groebner discrete volume" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1409.2745M" } } }