{ "id": "1409.2463", "version": "v1", "published": "2014-09-08T18:58:09.000Z", "updated": "2014-09-08T18:58:09.000Z", "title": "On the Diophantine equation X^{2N} + 2^{2 alpha} 5^{2 beta} p^{2 gamma} = Z^5", "authors": [ "Eva G. Goedhart", "Helen G. Grundman" ], "categories": [ "math.NT" ], "abstract": "We prove that for each odd prime p, positive integer alpha, and non-negative integers beta and gamma, the Diophantine equation X^{2N} + 2^{2 alpha} 5^{2 beta} p^{2 gamma} = Z^5 has no solution with X, Z, N in Z^+, N > 1, and gcd(X,Z) = 1.", "revisions": [ { "version": "v1", "updated": "2014-09-08T18:58:09.000Z" } ], "analyses": { "keywords": [ "diophantine equation", "odd prime", "positive integer alpha", "non-negative integers beta" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1409.2463G" } } }