{ "id": "1409.2418", "version": "v1", "published": "2014-09-08T16:23:28.000Z", "updated": "2014-09-08T16:23:28.000Z", "title": "Full hamiltonian structure for a parametric coupled Korteweg-de Vries system", "authors": [ "A. Restuccia", "A. Sotomayor" ], "comment": "14 pages", "categories": [ "math-ph", "hep-th", "math.MP", "nlin.SI" ], "abstract": "We obtain the full hamiltonian structure for a parametric coupled KdV system. The coupled system arises from four different real basic lagrangians. The associated hamiltonian functionals and the corresponding Poisson structures follow from the geometry of a constrained phase space by using the Dirac approach for constrained systems. The overall algebraic structure for the system is given in terms of two pencils of Poisson structures with associated hamiltonians depending on the parameter of the Poisson pencils. The algebraic construction we present admits the most general space of observables related to the coupled system.", "revisions": [ { "version": "v1", "updated": "2014-09-08T16:23:28.000Z" } ], "analyses": { "keywords": [ "parametric coupled korteweg-de vries system", "full hamiltonian structure", "poisson structures", "coupled system", "real basic lagrangians" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "inspire": 1315463, "adsabs": "2014arXiv1409.2418R" } } }