{ "id": "1409.1857", "version": "v1", "published": "2014-09-05T16:13:24.000Z", "updated": "2014-09-05T16:13:24.000Z", "title": "Global Okounkov bodies for Bott-Samelson varieties", "authors": [ "David Schmitz", "Henrik Seppänen" ], "categories": [ "math.AG", "math.RT" ], "abstract": "We use the theory of Mori dream spaces and GIT to prove that the global Okounkov body of a Bott-Samelson variety, with respect to a natural flag of subvarieties, is rational polyhedral. As a corollary, Okounkov bodies of effective line bundles over Schubert varieties are shown to be rational polyhedral. In particular, it follows that the global Okounkov body of a flag variety $G/B$ is rational polyhedral. As an application, we derive polyhedral expressions for the asymptotics of weight multiplicites in section spaces of line bundles.", "revisions": [ { "version": "v1", "updated": "2014-09-05T16:13:24.000Z" } ], "analyses": { "subjects": [ "14L30", "14C20" ], "keywords": [ "global okounkov body", "bott-samelson variety", "rational polyhedral", "mori dream spaces", "section spaces" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1409.1857S" } } }