{ "id": "1409.1518", "version": "v1", "published": "2014-09-04T18:37:37.000Z", "updated": "2014-09-04T18:37:37.000Z", "title": "Stability properties for quasilinear parabolic equations with measure data", "authors": [ "Marie-Françoise Bidaut-Véron", "Quoc-Hung Nguyen" ], "comment": "arXiv admin note: substantial text overlap with arXiv:1310.5253", "categories": [ "math.AP" ], "abstract": "Let $\\Omega$ be a bounded domain of $\\mathbb{R}^{N}$, and $Q=\\Omega \\times(0,T).$ We study problems of the model type \\[ \\left\\{ \\begin{array} [c]{l}% {u_{t}}-{\\Delta_{p}}u=\\mu\\qquad\\text{in }Q,\\\\ {u}=0\\qquad\\text{on }\\partial\\Omega\\times(0,T),\\\\ u(0)=u_{0}\\qquad\\text{in }\\Omega, \\end{array} \\right. \\] where $p>1$, $\\mu\\in\\mathcal{M}_{b}(Q)$ and $u_{0}\\in L^{1}(\\Omega).$ Our main result is a \\textit{stability theorem }extending the results of Dal Maso, Murat, Orsina, Prignet, for the elliptic case, valid for quasilinear operators $u\\longmapsto\\mathcal{A}(u)=$div$(A(x,t,\\nabla u))$\\textit{. }", "revisions": [ { "version": "v1", "updated": "2014-09-04T18:37:37.000Z" } ], "analyses": { "keywords": [ "quasilinear parabolic equations", "measure data", "stability properties", "model type", "study problems" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1409.1518B" } } }