{ "id": "1409.1367", "version": "v1", "published": "2014-09-04T08:55:09.000Z", "updated": "2014-09-04T08:55:09.000Z", "title": "Ladder representations of GL(n,Q_p)", "authors": [ "Dan Barbasch", "Dan Ciubotaru" ], "comment": "14 pages", "categories": [ "math.RT" ], "abstract": "In this paper, we recover certain known results about the ladder representations of GL(n, Q_p) defined and studied by Lapid, Minguez, and Tadic. We work in the equivalent setting of graded Hecke algebra modules. Using the Arakawa-Suzuki functor from category O to graded Hecke algebra modules, we show that the determinantal formula proved by Lapid-Minguez and Tadic is a direct consequence of the BGG resolution of finite dimensional simple gl(n)-modules. We make a connection between the semisimplicity of Hecke algebra modules, unitarity with respect to a certain hermitian form, and ladder representations.", "revisions": [ { "version": "v1", "updated": "2014-09-04T08:55:09.000Z" } ], "analyses": { "keywords": [ "ladder representations", "graded hecke algebra modules", "finite dimensional simple gl", "hermitian form", "determinantal formula" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1409.1367B" } } }