{ "id": "1409.1195", "version": "v1", "published": "2014-09-03T18:51:31.000Z", "updated": "2014-09-03T18:51:31.000Z", "title": "A KLR Grading of the Brauer Algebras", "authors": [ "Ge Li" ], "categories": [ "math.RT" ], "abstract": "We construct a naturally $\\mathbb Z$-graded algebra $\\mathscr G_n(\\delta)$ over $R$ with KLR-like relations and give an explicit isomorphism between $\\mathscr G_n(\\delta)$ and $\\mathscr B_n(\\delta)$, the Brauer algebras over $R$, when $R$ is a field of characteristic $0$. This isomorphism allows us to exhibit a non-trivial $\\mathbb Z$-grading on the Brauer algebras over a field of characteristic $0$. As a byproduct of the proof, we also construct an explicit homogeneous cellular basis for $\\mathscr G_n(\\delta)$.", "revisions": [ { "version": "v1", "updated": "2014-09-03T18:51:31.000Z" } ], "analyses": { "keywords": [ "brauer algebras", "klr grading", "explicit homogeneous cellular basis", "explicit isomorphism", "characteristic" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1409.1195L" } } }