{ "id": "1409.0143", "version": "v1", "published": "2014-08-30T18:35:06.000Z", "updated": "2014-08-30T18:35:06.000Z", "title": "Radial Symmetry on 3D Shells in the Landau-de Gennes Theory", "authors": [ "Apala Majumdar", "Giacomo Canevari", "Mythily Ramaswamy" ], "categories": [ "math.AP" ], "abstract": "We study the stability of the radial-hedgehog solution on a three-dimensional (3D) spherical shell with radial boundary conditions, within the Landau-de Gennes theory for nematic liquid crystals. We show that the radial-hedgehog solution has no zeroes for a sufficiently narrow shell, for all temperatures below the nematic supercooling temperature. We prove that the radial-hedgehog solution is the unique global Landau-de Gennes energy minimizer for a sufficiently narrow 3D spherical shell, for all temperatures below the nematic supercooling temperature. We provide explicit geometry-dependent criteria for the global minimality of the radial-hedgehog solution in this temperature regime. In the low temperature limit, we prove the local stability of the radial-hedgehog solution on a 3D spherical shell, for all values of the inner and outer radii.", "revisions": [ { "version": "v1", "updated": "2014-08-30T18:35:06.000Z" } ], "analyses": { "subjects": [ "35Q35", "35J20", "35B06", "76A15" ], "keywords": [ "landau-de gennes theory", "radial-hedgehog solution", "3d shells", "radial symmetry", "narrow 3d spherical shell" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1409.0143M" } } }