{ "id": "1408.6982", "version": "v1", "published": "2014-08-29T11:11:08.000Z", "updated": "2014-08-29T11:11:08.000Z", "title": "Optimality conditions for the buckling of a clamped plate", "authors": [ "Kathrin Knappmann", "Alfred Wagner" ], "categories": [ "math.OC" ], "abstract": "We prove the following uniqueness result for the buckling plate. Assume there exists a smooth domain which minimizes the first buckling eigenvalue for a plate among all smooth domains of given volume. Then the domain must be a ball. The proof uses the second variation for the buckling eigenvalue and an inequality by L. E. Payne to establish this result.", "revisions": [ { "version": "v1", "updated": "2014-08-29T11:11:08.000Z" } ], "analyses": { "subjects": [ "49K20", "49R05", "35J20", "35N25" ], "keywords": [ "optimality conditions", "clamped plate", "smooth domain", "second variation", "uniqueness result" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }