{ "id": "1408.6775", "version": "v1", "published": "2014-08-28T16:54:57.000Z", "updated": "2014-08-28T16:54:57.000Z", "title": "Singularity formation for compressible Euler equations", "authors": [ "Geng Chen", "Ronghua Pan", "Shengguo Zhu" ], "comment": "32 pages", "categories": [ "math.AP" ], "abstract": "In this paper, for the p-system and full compressible Euler equations in one space dimension, we provide an equivalent and a sharp condition on initial data, respectively, under which the classical solution must break down in finite time. Moreover, we provide time-dependent lower bounds on density for arbitrary classical solutions for these two equations. Our results have no restriction on the size of solutions.", "revisions": [ { "version": "v1", "updated": "2014-08-28T16:54:57.000Z" } ], "analyses": { "subjects": [ "76N15", "35L65", "35L67" ], "keywords": [ "singularity formation", "full compressible euler equations", "time-dependent lower bounds", "initial data", "sharp condition" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1408.6775C" } } }