{ "id": "1408.6037", "version": "v1", "published": "2014-08-26T07:35:48.000Z", "updated": "2014-08-26T07:35:48.000Z", "title": "A Posteriori Error Analysis of $hp$-FEM for singularly perturbed problems", "authors": [ "Jens M. Melenk", "Thomas P. Wihler" ], "categories": [ "math.NA" ], "abstract": "We consider the approximation of singularly perturbed linear second-order boundary value problems by $hp$-finite element methods. In particular, we include the case where the associated differential operator may not be coercive. Within this setting we derive an a posteriori error estimate for a natural residual norm. The error bound is robust with respect to the perturbation parameter and fully explicit with respect to both the local mesh size $h$ and the polynomial degree $p$.", "revisions": [ { "version": "v1", "updated": "2014-08-26T07:35:48.000Z" } ], "analyses": { "subjects": [ "65N30" ], "keywords": [ "posteriori error analysis", "singularly perturbed problems", "linear second-order boundary value problems", "perturbed linear second-order boundary value" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1408.6037M" } } }